A Study of Deposition Coatings Formed by Electroformed Metallic Materials

نویسندگان

  • Shoji Hayashi
  • Shuta Sugiyama
  • Kojiro Shimura
  • Go Tobayama
  • Toshio Togashi
چکیده

Major joining methods of dental casting metal include brazing and laser welding. However, brazing cannot be applied for electroformed metals since heat treatment could affect the fit, and, therefore, laser welding is used for such metals. New methods of joining metals that do not impair the characteristics of electroformed metals should be developed. When new coating is performed on the surface of the base metal, surface treatment is usually performed before re-coating. The effect of surface treatment is clinically evaluated by peeling and flex tests. However, these testing methods are not ideal for deposition coating strength measurement of electroformed metals. There have been no studies on the deposition coating strength and methods to test electroformed metals. We developed a new deposition coating strength test for electroformed metals. The influence of the negative electrolytic method, which is one of the electrochemical surface treatments, on the strength of the deposition coating of electroformed metals was investigated, and the following conclusions were drawn: 1. This process makes it possible to remove residual deposits on the electrodeposited metal surface layer. 2. Cathode electrolysis is a simple and safe method that is capable of improving the surface treatment by adjustments to the current supply method and current intensity. 3. Electrochemical treatment can improve the deposition coating strength compared to the physical or chemical treatment methods. 4. Electro-deposition coating is an innovative technique for the deposition coating of electroformed metal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Barrier Ceramic Coatings — A Review

Thermal barrier coatings (TBCs) provide effective thermal barrier to the components of gas turbine engines by allowing higher operating temperatures and reduced cool‐ ing requirements. Plasma spraying, electron-beam physical vapor deposition, and sol‐ ution precursor plasma spray techniques are generally used to apply the TBCs on the metallic substrates. The present article addresses the TBCs f...

متن کامل

ELECTROPHORETIC DEPOSITION OF TIO2-MULTI-WALLED CARBON NANOTUBE COMPOSITE COATINGS: MORPHOLOGICAL STUDY

A homogenous TiO2 / multi-walled carbon nanotubes(MWCNTs) composite film were prepared by electrophoretic co-deposition from organic suspension on a stainless steel substrate.  In this study, MWCNTs was incorporated to the coating because of their long structure and their capability to be functionalized by different inorganic groups on the surface. FTIR spectroscopy showed the existence of...

متن کامل

Microstructure and Property of Zr-Based Metallic Glass Coating Formed by Gas Tunnel Type Plasma Spraying

Metallic glass has excellent functions such as high strength and high corrosion resistance. Therefore, it is one of the most attractive materials, and various developmental research works have been conducted by many researchers. However, the metallic glass material is expensive to use, and a composite material is preferred for the industrial application. Thermal spraying method is one of potent...

متن کامل

Ti-Cr-N Coatings Deposited by Physical Vapor Deposition on AISI D6 Tool Steels

In this study, physical vapor deposition (PVD) Ti-Cr-N coatings were deposited at two different temperatures 100 and 400ºC on hardened and tempered tool steel substrates. The influence of the applied deposition temperature on the physical and mechanical properties of coatings such as roughness, thickness, phase composition, hardness and Young’s modulus were evaluated. Phase compositions were st...

متن کامل

A nanoscale characterization with electron microscopy of multilayered CrAlYN coatings: a singular functional nanostructure.

A combination of transmission electron microscopy techniques and spatially resolved microanalysis is used to investigate the nanostructure, constituting phases, and chemical elemental distribution in CrAlYN multilayered coatings. The location of the metallic elements and their chemical state are needed to understand their functional properties. Samples were prepared with variable Al (4-12 at%) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016